Prosím počkejte chvíli...
Nepřihlášený uživatel
Nacházíte se: VŠCHT PrahaFPBTÚstav biochemie a mikrobiologie  → Vědecké zaměření ústavu → Vědecké skupiny → Laboratoř biochemie proteinů s technologickým potenciálem
iduzel: 29797
idvazba: 66081
šablona: stranka
čas: 6.12.2020 01:47:05
verze: 4737
uzivatel:
remoteAPIs:
branch: trunk
Obnovit | RAW

Laboratoř biochemie proteinů s technologickým potenciálem

Domů  Projekty  Publikace

Proteiny hrají významnou roli v živém světě. Jejich rozmanitost je obrovská a fascinující. V naší laboratoři se zabýváme komplexním studiem proteinů. Zajímá nás především vztah mezi strukturou a katalytickou aktivitou enzymů, hledáme nové proteiny, se zajímavými vlastnostmi, optimalizujeme produkci rekombinantních proteinů a vyvíjíme nové metody molekulárního modelování s cílem simulovat pomalé a výpočetně náročné děje, jakými jsou například sbalování proteinů nebo interakce proteinů s ligandy.

Aktuálně řešené projekty

Chladově aktivní enzymy

Enzymy z organismů žijících v permanentně chladných prostředích (např. horské a polární oblasti) mají významně vyšší aktivitu při nízkých teplotách ve srovnání s enzymy z meso- a termofilních zdrojů. Tato vlastnost z nich činí zajímavé biokatalyzátory pro aplikace při nízkých teplotách. V naší skupině studujeme chladově aktivní glykosidasy (konkrétně chitinasy, celulasy, amylasy a β-galaktosidasy), které mají potenciál při využití v papírenském, potravinářském nebo farmaceutickém průmyslu.

obr1


Enzymy s terapeutickým potenciálem

Asparaginasy nalezly uplatnění v medicíně při léčbě akutní myeloidní leukémie. Využívá se zde jejich přirozené schopnosti štěpit L-asparagin, který následně schází nádorovým buňkám, v důsledku čehož je zastavena biosyntéza proteinů a dochází k apoptóze. Zdravé buňky jsou schopné si L-asparagin syntetizovat díky přítomnosti L-asparaginsynthetasy, a proto tímto typem léčby nejsou zasaženy. V současné době jsou v praxi využívány preparáty obsahující rekombinantní L-asparaginasu z bakterií E. coli a Dickeya dadantii, nicméně aplikace obou těchto preparátů s sebou nese řadu komplikací, a proto je nutné hledat jiné zdroje L-asparaginas s vhodnějšími vlastnostmi pro klinickou aplikaci.

obr2


Nukleasy jsou studovány již delší dobu pro jejich protinádorové účinky. Tento výzkum se dosud zabýval spíše živočišnými enzymy. V naší skupině studujeme enzymy z jiných zdrojů, jako jsou rostliny nebo bakterie. Tyto enzymy jsou studovány pomocí metod molekulární biologie a proteinového inženýrství. Biologické studie a krystalografické experimenty jsou realizovány ve spolupráci s Ústavem molekulární biologie rostlin, Ústavem fyziologie a živočišné genetiky a Biotechnologickým a biomedicínským centrem Akademie věd a Univerzity Karlovy ve Vestci (BIOCEV).

obr3

Proteomika lipidových tělísek

Zajímáme se o lipidová tělíska a jejich životní cyklus, se zvláštním důrazem na charakterizaci proteinů asociovaných s lipidovými tělísky trvale či v rámci konkrétní etapy životního cyklu. Naším cílem je přispět k popsání průběhu a regulace životního cyklu těchto specializovaných organel a tím i k biotechnologickému využití jak samotných lipidových tělísek (produkce lipidů a biopaliv, degradace ropy, transportní a imobilizační systémy pro léčiva), tak s nimi asociovaných proteinů (fúzní kotvy pro průmyslové rekombinantní exprese proteinů). Jako modelové organismy používáme zástupce prokaryotní (mořská bakterie Alcanivorax borkumensis schopná odbourávat ropu) i eukaryotní (rostlina Arabidopsis thaliana a kvasinka Saccharomyces cerevisiae) říše.

obr4



Proteiny účastnící se syntézy ladderánů v anammox bakteriích

Doposud ne příliš známé anammox bakterie (z angl. anaerobic ammonium oxidation) byly objeveny v polovině osmdesátých let a zdá se, že hrají významnou úlohu v koloběhu dusíku na Zemi. Anammox bakterie používají jako zdroj energie přímo amoniak, který přeměňují na plynný dusík, nepotřebují kyslík a místo, aby oxid uhličitý produkovaly, jej naopak spotřebovávají. Velice zajímavé jsou tím, že obsahují organelu zvanou anammoxosom, ve které je lokalizován energetický metabolismus. Membrána anammoxosomu je tvořena velmi zajímavými fosfolipidy, které mají kromě mastných kyselin navázané i velmi specifické lipidy - ladderány. Při zpracování amoniaku v anammoxosomu vzniká jako meziprodukt velmi reaktivní a toxický hydrazin, který je právě držen uvnitř organely pomocí ladderánů, které, na rozdíl od běžných mastných kyselin, propůjčují membráně nižší propustnost pro různé látky. Biosyntéza ladderánů doposud nebyla objasněna a je předmětem výzkumu.

obr5


Molekulární modelování

Pomocí počítačových simulací je možné studovat dynamické chování proteinů, sacharidů a dalších biomolekul a jejich komplexů. Zásadní nevýhodou těchto metod je jejich výpočetní náročnost. Kvůli ní je možné simulovat pouze nano- nebo mikrosekundová měřítka. Abychom mohli studovat děje, které probíhají v delších časových měřítkách, je nutné použít speciální simulační metody. V naší skupině používáme metadynamiku a další metody a snažíme se přispět k jejich rozvoji, například zapojením umělých neuronových sítí.

obr3



Aktualizováno: 17.11.2020 20:57, Autor: Dalibor Trapl


VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum

zobrazit plnou verzi